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The expectation of the solution process in a stochastic operator equation can be 
obtained from averaged equations only under very special circumstances. Conditions 
for validity are given and the significance and validity of the approximation in widely 
used hierarchy methods and the "self-consistent field" approximation in nonequilibrium 
statistical mechanics are clarified. The error at any level of the hierarchy can be given 
and can be avoided by the use of the iterative method. 
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In the quantum mechanical many-body problem and in the theory of turbulence, m 
in the scattering or propagation of waves in random media, ~2-5) and other applica- 
tions, (~,6) stochastic equations 1~,5,7-9) arise. The dynamical equations lead to an 
infinite hierarchy a~ of coupled equations (hierarchy equations) in which ensemble 
averages of  interest are related to successively higher-order terms. A truncation 
procedure or closure approximation is made which terminates the hierarchy at some 
level to obtain a solution. Despite considerable and continuing use of this method in 
theoretical physics, its validity has not been adequately discussed. In general, it can be 
shown to be incorrect except where the randomness is relatively insignificant so that 
perturbation methods are satisfactory (2,5) (then, the methods are equivalent) and 
except also for a highly singular case (Dirac measure space) lacking in physical 
interest. To see this precisely and to inquire into the significance of the closure approxi- 
mation, let us consider the relationship between the expected solution of a stochastic 
equation and the solution of the associated averaged (deterministic) equation, c7) 
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I f  (X2, o~',/~) is a probability measure space with s a nonempty abstract set or 
sample space, ~ a Borel field of subsets of g2, and/z a complete probability measure 
on ~-, and if, further, W is a Banach space with f4 a ~r-algebra of Borel subsets of W, 
then a random function {x(t, o9), co ~ f2, t E T} can be considered a mapping from f2 
into W, where {co : x(co, t) ~ f~} ~ ~ for t ~ T. Now, we consider a stochastic trans- 
formation of the random function x into another random function y, i.e., a linear 
stochastic operator a~,121 H(co) mapping f2 • W into an undefined space ~ supposing 
H(co)[x] is for every x E Y" a random variable with values in ~r Thus, the output or 
transformed stochastic process y(co) = H(co)[x(co)] represents the stochastic trans- 
formation or action of the random operator on the input stochastic process x. z 
Conversely, we may have a differential equation for the system--a stochastic differen- 
tial equation 19,m of the form 5e(co)[y(co)] = x(co), or simply ~Oy = x, where x(co) is 
a random variable with values on W: suppose, for example, x(t) is a stationary random 
function representing an input voltage to an R C  filter and y(t) is a stationary random 
function representing the voltage across the capacitor. Se is the operator 1 -k R C  d/dt. 
If  we suppose that C is randomly time varying, ~ is a random operator. 

Let us therefore consider the expected solution of the stochastic differential 
equation 5ey = x where x(t, co'), t ~ T, co' ~ g2' is a stochastic process and 

~-a~(t, co) = i a.(t, co) d~ldt  ~ 
v=O 

is a stochastic (differential) operator by virtue of the stochastic coefficient processes 
a~(t, co), t ~ T, co ~ s I f  we have ~-~(t, co)[y(t, co)] = x(t, co), appropriate decomposi- 
tions on the probability spaces lead to our more useful form. 

Clearly, y is y(t, a), co') and we must solve for it in a statistical sense. Assuming 
existence of the integrals, the expected solution ( y ) ,  or E{y}, is defined by 
.[~ fo, y(t, co, co') dtz(co) dlz'(co'), where/x and/z '  are the appropriate measures over f2 
and ~ ' .  The expectation (x(t,  co')) = ~ ,  x(t, co') dtz'(co'). The average operator L 
will be defined by L[.] = (Lie(t, co)[.]) = J'9 ~ ( t ,  co)[.] d~(co). Writing (s without 
indicating the operand, we write &o = L + N, where L is a deterministic operator 
and ~(t ,  co) is a random operator whose expectation is zero. The average operator L 
is clearly obtained from the stochastic operator 5r by replacing the coefficient pro- 
cesses by their means. 

If s is replaced by L and the input x by (x) ,  the result is a simple deterministic 
equation, or so-called "averaged" equation, to solve. Then L[y] = (x) .  It  has been 
pointed out that the solution ~: = L - l ( x )  is not, in general, equal to the expectation 
( y )  of the solution process y in the stochastic equation, but further examination 
clarifies closure approximations which are still receiving general use. For  example, the 
"self-consistent field" approximation used in nonequilibrium statistical mechanics 
(Vlasov equation for a plasma) is of this type. The following will clarify the significance 
of the approximation, which we wish to discourage and replace with methods which 
are discussed in Refs. 12-16. 

A forthcoming paper will develop precisely the notion of a stochastic operator on random 
processes in a general framework. 
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Suppose we simply average the equation 5qy = x, writing as a consequence 
(S ly )  = (x) .  The left side is identical to 

f f o og)Ey(,, og, og')l +(o9) d.'(o9') 

Suppose further that/z(o9) can be written as the symbolic Dirac delta function 
in the sense of distributions, i.e., d/x(og) = 6(o9 --  COo) do), a very singular measure on 
the probability space of the operator which, in effect, makes a deterministic operator 
out of the stochastic operator by picking out one realization or making them all 
identical. Then, we have 

~(t ,  o9o) f ,,, y(t, o9o, o9') d~'(og') 

which can only be L[ (y ) ] ,  or L ( y )  if we drop the unnecessary brackets. This is 
quickly verified, since the use of the Dirac measure d/~(og) = 8(o9 -- COo) do9 means 
f~ 5a(t, co)[.] d/z(og) is ~ ( t ,  COo) and L by definition. Hence, we have L[ (y ) ]  = (x) ,  
which means the expected solution ( y )  of the stochastic equation is the solution ~: of  
the averaged equation if the S-function measure is used on the space of ~ ,  i.e., 
(S~[y])~,~ = (L[y] )  = L[(y) ] .  (This was recognized by Bharucha-Reid. (7)) 

The above simply means that, if there is no randomness in the operator and the 
stochastic operator 5~ can be replaced by the deterministic operator (L~ a) or, equiva- 
lently, L, we have thrown away the ~ .  Hence, (5r  = ( L y )  = L ( y )  or (La ) (y ) .  

If  ~ is not ignored, (Sey)=7~ ( 2 a ) ( y ) ,  since ( ~ y )  will not separate except 
within the confines of a perturbation approximation. The Dirac measure on the 
space of L~ a means cr is no longer stochastic. Then the expectation is obtained by 
averaging everything and the averaging method is justified only in this highly singular 
case (and in some pathological cases3). 

If  the measure spaces s and s are identical, we have (now further omitting the 
t for simplicity in notation) 

~(o9)  y(og) = x(og) 

x(og) d~(og) = <~ey> = f zo(og) y(og) +(o9)  (x(og)) 
d , J  

which, in the case of the S-function measure, is 

( x )  = ~(o90) Y(o90) = L ( y )  

since 

and 

( ~ e )  _- f ~e(o9) 6(o9 - o90) do9 = ~e(o90) = L 

< y )  = f y(o9) 6(o9 - o90) do9 = y(o90) 

8 Where the rates of variation are very different, a fact not known before the solution is made. 
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To verify tha t  no o ther  possibil i t ies exist, write ( L a y )  = L ( y )  by assumpt ion  
wi thout  the Dirac  measure.  Then,  

<y) ~- L - ~ ( x )  

= < y )  + 

La(t, ,o)[y, ,o, ,o31 dt~(~o) aS(o;) 

(L + ~)[y] at~ ~ '  

= ( y )  -? L - ~ ( ~ y )  

i.e., ( ~ y )  must  be zero;  unless the second te rm is zero for  all t, the assumed separabi l i ty  
leads to a contradic t ion.  We can see tha t  this should be the case by wri t ing Lay = x 
as (L § ~ )  y = x, or  y = L - i x  --  L - l N y ,  and then averaging to get 

( y )  = L - I ( x )  --  L - l ( ~ y )  

I f  we want  < y )  to equal  L - l ( x ) ,  then ( ~ y )  must  be zero. The f - func t ion  s imply picks 
out  a n o n r a n d o m  opera to r  f rom the ~ i.e., its average,  which is abso rbed  into L. F o r  
o ther  measures,  we can now assume ~ is " sma l l "  i.e., ~ = ~Lal where La~ is a small  
stochastic pe r tu rba t ion  on L, with (La l )  = 0. Then,  

( ~ Y )  = ('La~(Y0 + "Y~ + O ( d ) ) ) ,  

where Y0 = (Y)-  Consequent ly ,  ( N y )  = ( - ~ ( y ) )  + O(d )  = ( N ) ( y )  -t- O(E2). a 
The first t e rm is zero when ~ is zero mean.  Wi th in  the confines o f  pe r tu rba t ion  
theory,  the separa t ion  is val id for  any  measure,  or  it  is val id for  the singular  measure  
wi thout  assuming ~ is small .  Thus,  ( N y )  = 0 can be taken  as a necessary and  
sufficient condi t ion  for  the val idi ty  o f  the  separat ion.  I t  can be zero because N is 
zero or, using a pe r tu rba t ion  series, because ( N )  is zero. 

Let  us now take  a s imple case o f ~  involving no derivatives,  i.e., La = L + ~(t, co), 
where the stochastic equat ion is [L + c~(t, oJ)]y(t,  co, c o ' ) =  x(t, ~o'). The term 
( N y )  is now 

co, co')> = f f c~(t, co) y(t,  co, co')dlx(Co ) dtz'(w' ) (~(t, co) y(t, 

Clearly,  the 8-function measure  gives the desired result  since (La )  = 0. I f  ( ~ )  is 
nonzero,  it  would  be abso rbed  into L in any event; we chose L = (La) .  I f  we use 
o ther  measures over O, we get J" ~(t) y(t, ~o') dy (o / ) .  Since @(t ,  co)) = f a(t, co) d/~(co) 

4 Let s = (--1/2, 1/2) with Lebesgue measure, ~o E ~2. Let s = d/dt + eco, with 0 < e ~ 1, and 
x(t, co) = t + oJ. Hence, L = d/dt and R = eo~. (R) = e/2. Now, (Ny) = (e~oy) = (e~oy o + Eyl + 
O(d) = (EoJ(y)) + O(d) = (e/2) (y) + O(d) ~ (R)(y)  + O(d). 
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is assumed to be zero, but c~, or ~ ,  is assumed to be nontrivial, 5 we cannot have the 
double integral equal to zero f o r  all t and cannot therefore have (5ey)  = (s  

We have seen that, except within the confines of  a perturbation theory, the 
averaging is justified only for this highly singular measure to make both the operator 
and the solution process in (5~ be deterministic and separable into ~f ie) (y)  = L{ y) .  
Otherwise, the solution ~: of  L[y]  = ~ x )  is not ~y).6 

In the commonly used hierarchy equation method of solving stochastic equations 
for various moments, an essential truncation or closure approximation is used to 
terminate an otherwise infinite system of equations to get a solution. (This truncation 
assumption has been discussed by Kraichnan, Keller, Bharucha-Reid, Richardson, 
and others; however, its exact validity has remained a matter of  doubt.) I t  is, however, 
precisely equivalent to the separation (Se){ y )  if done at the first stage of the hierarchy. 
At the second level (supposing again S = L -k ~ ,  where .~ is the random part  of  the 
operator and ~ )  = L), we obtain ( N L - a N y ) ,  which is separated by handwaving 
arguments into < N L - ~ N ) ( y )  so the resulting equation can be solved for 
( y ) .  The procedure is valid within the framework of perturbation theory, i.e., 
if ~ = e ~  + E2~ + O(ea), where ~ ,  ~ are small (random) perturbations of  L. 

This arises as follows. We have 5ey = (L § ~ ) y  = x. Averaging, we get 
L ( y )  + ( N y ) =  { x ) .  Since {Ny)  causes difficulties, we return to the original 
equation and write L y  = x - -  N y ,  or y = L - ~ x  - -  L - ~ y .  Operating f rom the left 
by N, we have -~y = ~ L - ~ x  - -  N L - ~ . ~ y .  Assuming statistical independence of 5e 
and x and averaging, 

< ~ y )  = < ~ )  L - l ( x )  _ < ~ L - l ~ y )  

The first term on the right is zero if N has zero mean. (Of course, 

( ~ L - ~ x )  --J: ( N )  L - I ( x )  

in general but only if statistical independence of ~ and x is assumedY) The second 
term is generally separated with little or no justification into ~ L - X ~ ) ( y ) .  I f  we 
grant this for the moment,  then L ( y )  - -  ( N L - ~ ) ( y )  ~-- ( x )  is easily solved for 
( y ) .  The separation ( ~ L - ~ y ) ~ ( ~ L - ~ ) ( y )  is similar to the separation 
~ y )  ~ (~O)~y) except it is done at the next higher level of  the hierarchy. I t  means 
exactly the replacement of  the random operator ~ L - ~ N  by its deterministic equivalent; 
then the left expectation bracket can be moved to the right until only y is enclosed by 
brackets. Just as we replaced s by (s i.e., by L, before, we have now replaced 
NL-ZN by the correlation term < N L - ~ ) .  At whatever level of  the hierarchy we 

5 We are not interested in either y identically zero or (y) equal to zero [and further, we do not allow 
y(t, co') to be written as Y0 + eYl + dy~ + ... with Y0 equal to (y) in order to have a first term 
independent of ~o']. 

6 One could conceivably write the exact equation for ~y) in the form (s (y) = (x) and expand 
(~- l ) -z  in a power series and truncate the series to get the perturbation result, but the inverse 
of a stochastic matrix is to be avoided. 
E.g., let Q = (13, 1) with Lebesgue measure, co s 12. Let s = (1 + co) d/dt. Then, L = d/dt and 

= co d/dt. Letx(t, oJ) = t + co. Now, <~L-ix)  = (t/2) + (1/3), (~)  = (1/2)d/dt, (x~ = (1/2) + t, 
and L-l<x) -- (t/2) + (t~/2). Hence, (~)  L- l (x )  ~ (1/4) + (t/2) =/= (~L-Zx) .  
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make such a "closure approximation" or "local independence assumption," we are 
replacing a more and more complicated operator, depending on the level, of the form 
~ L - I ~ L - I ~  ... ~ L - I ~ ,  by its expectation. Herein lies the significance of the closure 
approximation. Separation of (Sey) at the first stage, ( ~ L - ~ y )  at the second, or 
( ~ L - Z ~  ... ~ L - l ~ y )  at higher stages, from the y requires ignoring the randomness 
of  the appropriate operator part, which is what we do by letting d~(oJ) = ~(~o -- COo) dco 
on the measure space ~2. The error, or, a t /east ,  bounds on the error can now be 
determined by comparing the result for each stage of approximation with the results 
given in Refs. 12 and 13 and we propose to do this in a following paper. 

Some additional comments may be useful. Since perturbation methods are 
limited to small randomness and solving "averaged" equations is only valid within 
the same framework or in the singular case (where the physical interest also vanishes) 
where the operator is no longer stochastic, the most satisfactory method so far 
available for the solution of a stochastic differential equation without highly restrictive 
assumptions is the iterative method of Adomian, ~13) although a more general method 
may be possible ~13,~4) and is receiving further study. Applications are numerous, e.g., 
the propagation of electromagnetic waves in a stochastic medium, c4,5,a2,~6) Sibul C~s~ 
and Adomian c~) (seePart III) have shown that the iterative method is also useful in the 
wave propagation problem, extending without substantial difficulty to the case of 
integral equations and partial differential equations. In the case of integral equations, 
the relationship to the resolvent kernel c~5) clarifies the solution. The method is not 
limited to expectation of the solution process. Covariance functions (or covariance 
matrices or mutual coherence functions) and other statistics can be found in terms 
of stochastic Green's functions. ~2,~4~ 
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